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Introduction

Towards Industrial LES/DNS in Aeronautics –

Paving the Way for Future Accurate CFD

• Objective: Development and testing of TsAGI code based on the high-order 
Discontinuous Galerkin Method (DG) for turbulent flow computations 
(aerodynamics, aeroacoustics)

• In addition, comparison with the Finite Volume Methods (FV – TsAGI’s code) 
is presented
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Finite Volume Method (implementation of TsAGI)
• Implementation of WENO is partial:

– One-dimensional reconstruction

– One quadrature point on the side of the cell

– Central difference scheme for viscous terms

*) Zhang R., Zhang M., Shu Ch. W. On the order of accuracy and numerical performance of two classes of finite 
volume WENO schemes // Communications in Computational Physics 9 (2011), No 3, pp. 807–827

• In the following tests:

– slope limiters are switched off (linear weights, no MP)

– Roe Riemann solver is employed:

• Runge–Kutta, TVD3

*)
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Discontinuous Galerkin Method (1)

The system of equations and solution expansion:

We multiply it by φi and integrate over the volume of cell Ω:

Substituting the expansion of U and taking into account the orthonormality of basis functions,

We arrive at the equation system for expansion coefficients ui :
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Discontinuous Galerkin Method (2)

• { ϕj (x) } is full orthonormal polynomial set up to order K=1, 2, 3, 4, 5

• integration is performed using the Gauss formula with tensor product of 1D 
Gauss–Legendre quadratures

• second order curvilinear meshes are used

• Runge–Kutta, SSP5

The resulting system of equations:

Roe Riemann solver for inviscid flux Bassi–Rebay 2 method for viscous flux
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Elementary hexahedrons and their mappings

Serendipity transformations: 
a) “linear”, 8 vertices

b) : “quadratic”, 20 points
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Flow over cylinder: computational mesh and flow parameters

• A series of refined meshes with dimensions from 16 x 4 x 1 to 128 x 32 x 1 cells

• Rcylinder = 0.5, Router = 20, Δz = 0.1

• Cylinder surface is «slip wall», side planes are «symmetry»

• Freestream values are imposed at the outer boundary

• Freestream Mach number M∞ ≈ 0.15



10

Flow over cylinder: total pressure field

FV, WENO 5

• 128 x 32 x 1 mesh

FV, central scheme DG K = 1

DG  K = 3 on a curved mesh

polynomial order
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Flow over cylinder: entropy error, L2 norm

• With FV, error 10-10 can be achieved on a mesh of size 1010 DOFs

• DG requires only 105 DOFs for the same accuracy

FV DG
order = 1.0

order = 2.7

order = 1.8

order = 1.0

order = 2.3–2.6

order = 3.2

order = 3.7

NDOF = (Number of cells) x (Number of basis functions)
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Evolution of 2D vortex:
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Evolution of 2D vortex: L0 error

order = 2.0

order = 2.4
order = 2.0

order = 3.4

order = 2.8

orders = 4–6

• With FV, error 10-8 can be achieved on a mesh of size 1010 DOFs

• DG requires only 105 DOFs for the same accuracy

FV DG
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Taylor–Green Vortex test case

Pressure isosurfaces, Re = 1600
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Taylor–Green Vortex: DG method accuracy, 643 mesh

Spectral method reference data: W.M. van Rees, A. Leonard, D.I.Pullin, P. Koumoutsakos.
А comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high 
Reynolds number // J. Comput. Phys. 230 (2011), pp. 2794–2805

Turbulent kinetic energy                            Enstrophy
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Taylor–Green Vortex: convergence and time requirements

• NDOF = number of degrees of freedom 

• tcomp = computing time for each calculation (scaled to 512 core cluster)

• error = enstrophy maximum difference obtained in the calculation and in 

the reference solution

643 963 1283 1923 2563 3843 5123

central 2.1 x 106

0.36 h
68%

WENO5 2.1 x 106

0.49 h
45%

WENO9 2.6 x 105

0.03 h
63%

8.8 x 105

0.13 h
50%

2.1 x 106

0.56 h
38%

7.1 x 106

2.3 h
23%

1.7 x 107

9.6 h
16%

5.7 x 107

39 h
8.0%

1.3 x 108

153 h
4.7%

643 963 1283

K = 1 1.0 x 106

0.23 h
60%

3.5 x 106

1.0 h
45%

8.4 x 106

3.7 h
37%

K = 2 2.6 x 106

1.8 h
25%

8.9 x 106

9.1 h
13%

2.1 x 107

32 h
6.9%

K = 3 5.2 x 106

10 h
10%

1.8 x 107

52 h
4.2%

4.2 x 107

159 h
2.2%

K = 4 9.2 x 106

39 h
5.0%

3.1 x 107

198 h
1.7%

7.3 x 107

623 h
0.89%

K = 5 1.5 x 107

136 h
2.2%

FV schemes DG schemes

• Up to 4096 cores were used for DG computations
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Taylor–Green Vortex: enstrophy peak evaluation

After K>2 increase in the order of the scheme and increase in the computational grid 

size have virtually equal effect on enstrophy error level
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Taylor–Green Vortex: MPI scalability
• max – maximum possible acceleration (max = Ncores)

• opt – acceleration 1.8 times for every doubling of CPU cores

Increase in the number of cores (> 4,000) leads to reduction in scalability



21

Taylor–Green Vortex: OpenMP scalability

forecast:

MPI + OpenMP

MPI

• MPI + OpenMP approach is promising with further increase of core number

MPI - Separated memory for each core and a big data exchanges;
OpenMP - Shared memory for all cores of the computer node;

TsAGI cluster: 32 CPU cores on each computer node -> 8 CPU cores can be joint into one 8-thread 
process without loss of computational efficiency
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Periodic hill flow

• streamwise and spanwise periodic flow

• forcing term dp/dx is imposed to maintain the mass flow rate

• Reynolds number Re = 10595, Mach number M ≈ 0.1

• uniform initial flowfield, initial state is “forgotten”

• Implicit Large Eddy Simulation (ILES) based on DG K = 1, 2, 3

h

2.035h

4.5h 9h

U/Ub

• An ERCOFTAC QNET CFD UFR 3-30 test case
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• The following data are collected:

– Average velocity, pressure, density fields

– Correlations (at the moment, in cell centers only

• Averaging is done over time (for at least 15 tc) and over span (z axis direction)

Periodic hill flow: computational mesh and averaging
relatively coarse 32 x 16 x 16 mesh 

has been used
Cf

t / tc

start collecting

correlations

flow establishment start averaging at t = 20 tc

,,,, PWVU

,)( 22 Uuu  wvwuvu  ,,,, 22 wv 

Averaging method

Reference solution: NDOF = 13,100,000;
DG solution: K=1 – NDOF=32*16*16*4=32,768

K=2                                          81,920
K=3                                        163,840
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Periodic hill flow: mean velocity profiles

• Reference LES data: M. Breuer, N. Peller, Ch. Rapp, M. Manhart, Comput. Fluids 2009

x = 0.05h x = 3h x = 6h

x = 0.05h x = 3h x = 6h
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Periodic hill flow: shear stress profiles
x = 0.05h x = 3h x = 6h

x = 0.05h x = 3h x = 6h

• Reference LES data: M. Breuer, N. Peller, Ch. Rapp, M. Manhart, Comput. Fluids 2009
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Detached-eddy Simulation DDES
P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.Kh. Strelets, A. Travin. A new version of detached-eddy simulation, 
resistant to ambiguous grid densities // Theor. Comput. Fluid Dyn. 20, pp. 181–195, 2006

• A modified SA equation of the turbulence model is solved :
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Vorticity field behind the ledge

RANS

LES

• The length scale varies smoothly from dwall (RANS)  to Δcell (LES):



“Noise suppressing nozzle” test case TC-P4:
Dual-stream jet nozzle

• dual-stream coaxial nozzle

• cental body

• cold air flow

• pressure difference between the contours is 
generated by the grids

front view

back view



Flow regime and visualization

Inner contour:

• subsonic jet, M = 0.85 at nozzle exit

• nozzle pressure ratio NPR1 = 1.72

• diameter-based Reynolds number Re1D = 0.96∙106

Outer contour:

• supersonic underexpaneded jet, M=1 at nozzle exit

• nozzle pressure ratio NPR2 = 2.25

• diameter-based Reynolds number Re2D = 2.872∙106

Shlieren visualization,
0.01 s exposure

Shlieren visualization,
3∙10-6 s exposure

Laser knife visualization



Pitot pressure measurements

x, mm
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Root mean square mass flow rate pulsations at different jet cross sections and frequency 
amplitude spectrum was observed using hot wire



Meshes for finite volume computations

3D Computational domain

10 D

10 D • 3D hexahedral structured mesh, 25∙106 cells

• Initial steady RANS computation using SST 
turbulence model

• RANS flowfield used as initial conditions for 
unsteady DES-SST computation

• 140 characteristic times have been simulated

• Free outer boundaries with supersonic outlet

• Smooth adiabatic no-slip nozzle walls

• Inlet with uniform flow in the contours, Tu=1% (outer contour) and 10% (inner contour; 
decays quickly within the nozzle)



Flowfields obtained in computations

steady RANS 

DDES

Mach k, m2/s2



RANS computation results: pressure profiles

x, mm
section 2

section 4

section 6

• boundary layers in outer contour are too thin in the 
computation

• wake diffusion behind the central body is 
underpredicted

• outer mixing layer growth rate is captured well
x/Ra

x/Ra

x/Ra



DES computation results: mass flow rate spectra

• spectra in shear layer are predicted better than along the centerline

x/Ra=3.03, y/Ra=0

x/Ra=3.03, y/Ra=0.75x/Ra=0, y/Ra=0.74

x/Ra=0, y/Ra=0

1 2

3 4

point 1 point 2

point 3

point 4

0m

0m0m
0m

Hz,f

Hz,fHz,fHz,f
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Nozzle test case: mesh and first computations
Inner surface of nozzle (medium mesh)

Fine mesh 

from NASA 

website

New fine 

DDES 

mesh for 

wall 

functions

Nozzle tip

Problems with Discontinuous Galerkin computations

• instability at the origin of the shear layer

• problem is independent of Mach number

• DG monotonization is now considered
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Conclusions

• DG approach up to K=5 have implemented  in TsAGI’s CFD code successfully;

• To achieve enstrophy error lower than 20% in the Taylor–Green vortex problem, 

WENO class A scheme requires at least twice more time than high order DG. 

This difference becomes larger as the required accuracy grows;

• In the computations on a cluster of up to 4000 cores, the speed of the program 

is increased by more than 1.8 times with each doubling of core number. Use of 

a biggest number of cores requires a multilevel parallelization involving 

OpenMP;

• Second order FV RANS and DDES calculations for nozzle test case performed. 

For high-order DG calculations of nozzle limiting procedure is required;


